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ABSTRACT: Two relatively new approaches to neutron cross section data

evaluation are described. They are known collectively as Unified Monte Carlo

(versions UMC-G and UMC-B). Comparisons are made between these two

methods, as well as with the well-known generalized least-squares (GLSQ)

technique, through the use of simple, hypothetical (toy) examples. These

new Monte Carlo methods are based on stochastic sampling of probability

functions that are constructed with the use of theoretical and experimental

data by applying the principle of maximum entropy. No further assumptions

are involved in either UMC-G or UMC-B. However, the GLSQ procedure

requires the linearization of non-linear terms, such as those that occur when

cross section ratio data are included in an evaluation. It is shown that these

two stochastic techniques yield results that agree well with each other, and

with the GLSQ method, when linear data are involved, or when the perturba-

tions due to data discrepancies and nonlinearity effects are small. Otherwise,

there can be noticeable differences. The present investigation also demon-

strates, as observed in earlier work, that the least-squares approach breaks
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down when these conditions are not satisfied. This paper also presents an

actual evaluation of the 55Mn(n,c)56Mn neutron dosimetry reaction cross sec-

tion in the energy range from 100 keV to 20 MeV, which was performed using

both GLSQ and UMC-G approaches.

KEYWORDS: evaluation methods, Unified Monte Carlo, generalized least-

squares, nuclear data

Introduction

Accurate knowledge of the differential cross sections and their correlations and
uncertainties for a diverse collection of neutron reactions, as a function of neu-
tron energy, is essential for effective neutron spectrum adjustment applications
in neutron dosimetry. The selection of these reactions and steady improvements
in the knowledge of their cross sections and corresponding reduction of their
uncertainties have been a work in progress for many years. Advances in nuclear
models and the codes that implement them, along with growth in the content
and improvement in the quality of the experimental cross-section databases,
have enabled evaluators to produce evaluations that very likely approach the
true cross section values within the limits of the assumed uncertainties. The use
of theory allows threshold-reaction cross sections to be extrapolated reliably to
energies near threshold for which the values are very small and experimental
data are either lacking or unreliable. Also, theory can be used for interpolation
elsewhere, particularly in certain neutron energy regions, such as between 10
and 14 MeV and above 14 MeV, where measurements are difficult and for which
experimental data are sparse. However, nuclear models alone usually cannot
provide adequate knowledge of the normalization of these cross sections, at
least not with sufficient accuracy to satisfy the stringent requirements for neu-
tron dosimetry applications. Also, fine features in the shapes of these cross sec-
tions as a function of energy generally cannot be reproduced sufficiently well
using nuclear models. Therefore, experimental data are essential. The two
approaches to nuclear data development—modeling and experimentation—
clearly complement each other in many ways.

An important aspect of nuclear data evaluation is the application of objec-
tive methods to merge theoretical results (calculated using the nuclear models)
and experimental information. Early evaluation methods based on qualitative
comparisons of experimental and theoretical data were generally superseded in
the late 1970s by more objective approaches based mainly on the least-squares
concept [1]. When extensive experimental data are available to define the cross
sections, the simple least-squares method can be applied. In other situations in
which experimental data are somewhat sparse and reliance on theory is greater,
the generalized least-squares method (GLSQ) is usually used. Both techniques
are widely employed by data evaluators, but there are limitations to their applic-
ability. One important limitation is that these two methodologies are essentially
linear in nature. That is, the equations used to implement least-squares analyses
are derived via the linearization of more complicated (and generally non-linear)
expressions. Often this does not cause any problems in actual evaluations, but
in certain circumstances the neglect of non-linear terms can lead to excessive
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biases when high accuracy is sought. In particular, problems might be encoun-
tered when ratio data and data with large uncertainties or discrepant data are
considered in the evaluation process.

With these limitations in mind, a new approach to nuclear reaction cross
section data evaluation was suggested a few years ago by Smith [2]. It is gener-
ally referred to as the Unified Monte Carlo (UMC) method; in this paper it is
denoted by UMC-G. This method involves constructing a multi-parameter joint
probability density function using data generated from nuclear modeling, in
addition to available experimental data. This probability distribution is then
sampled stochastically to generate a Markov chain of statistically distributed
random cross section values and other observable physical quantities that can
be used subsequently to calculate mean values and covariances, i.e., the ele-
ments of a typical Evaluated Nuclear Data File (ENDF)-type evaluation [3]. This
approach was first demonstrated by means of a very simple hypothetical exam-
ple (“Toy Story 1”) [2]. It was discovered quite early that this method yields
results comparable to those of the established GLSQ under conditions consist-
ent with the assumptions of this venerable approach. However, in addition it
offers the opportunity to deal properly with evaluation situations that involve
more complicated types of experimental data (e.g., ratios) that cannot be dealt
with as rigorously when using GLSQ. The advantages and possible limitations
of UMC have been explored extensively during the intervening years since it was
first proposed, and the results of this work have been reported in two more
recent publications [4,5]. Again, this work involved using simple hypothetical
examples (“Toy Story 2” and “Toy Story 3”).

The present paper reports on the recent development and subsequent
testing of an alternative formulation of UMC (UMC-B). Although closely
related to the original approach (UMC-G), this variant is conceptually some-
what simpler to understand, and it would appear to offer some advantages in
certain situations relative to the earlier version of UMC. The idea of this new
approach is that nuclear model parameters are randomly sampled as in
UMC-G, but in addition weighting factors are calculated on the fly, one for
each sampling history. The weighting factors are based on the quality of
agreement between available experimental data and the corresponding
observable quantities calculated using individual samples of theoretical cross
section values generated from the randomly selected model parameters. These
weighting factors are retained as additional components of the above-
mentioned Markov chain of stochastic values for use in calculating weighted
mean values and covariances, as well as other statistical quantities that might
be desired. UMC-B has been tested using simple hypothetical examples (“Toy
Story 4”), and the results are compared to corresponding ones obtained using
both the GLSQ and UMC-G approaches. The present work describes the new
UMC-B approach, indicates the differences between it and UMC-G, and pro-
vides results from the various numerical examples selected to demonstrate it.
Finally, this paper documents applications of the GLSQ and UMC-G
approaches to a realistic nuclear data evaluation exercise: the evaluation of
55Mn(n,c)56Mn dosimetry reaction cross sections in the fast-neutron energy
region from 100 keV to 20 MeV.
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Formalism

All of the methods described in this paper have their origins in a common prob-
abilistic approach to the merging of data based on the Bayes theorem [1] and a
fundamental principle of information theory known as the principle of maxi-
mum entropy, as first introduced by Shannon [6] and later expanded by Jaynes
[7]. For the reader’s convenience it is worthwhile to summarize these concepts
and elucidate the steps leading up to the specific formulas applied in various
manifestations of the techniques mentioned in the Introduction. For the present
purposes, the Bayes theorem is expressed in terms of probability density func-
tions rather than actual probabilities. Quantities expressed in bold font repre-
sent vectors and matrices, and those in regular font are scalars. The symbol “�”
is used to represent vector (or matrix) multiplication, and the symbol “�” repre-
sents scalar multiplication. The latter symbol is used only when needed for
clarity. The following discussion describes the UMC-G method that was first
proposed by Smith [2] in some detail, so that differences between this approach
and UMC-B can be better understood.

Let yE represent a collection of measured (experimental) quantities with a
corresponding covariance matrix VE that expresses their uncertainties and corre-
lations. Let us suppose that there are n elements in the vector yE and n2 elements
in the n�n matrix VE. VE must be a symmetric matrix, so the actual number of
distinct elements in this matrix is n(nþ 1)/2. It must also be a positive definite
matrix. Furthermore, let rC represent a collection of m quantities calculated from
a nuclear model with a corresponding m�m covariance matrix VC that expresses
their uncertainties and correlations. There are both deterministic and stochastic
procedures for generating this information. We assume that a stochastic
approach first proposed by Smith can be used for this purpose [8]. A collection of
K nuclear model parameter sets {qk} is produced at random by sampling within
ranges of the individual parameters corresponding to their uncertainties. It is
usually assumed that each individual nuclear model parameter of the collection q
is independent of all the other parameters, but parameters’ correlations could be
taken into account if desired. The parameter sampling generates a corresponding
collection of K derived cross section vectors {rCk¼M[qk]}, where M represents
the nuclear-model computational algorithm that generates rCk from qk. From this
analysis, one can obtain the mean-value vector and corresponding covariance
matrix, denoted by rC and VC, respectively, by applying formulas mentioned in
the report from Smith [8]. Even though the nuclear model parameters are usually
treated as independent, the components of rC will not be independent, owing to
the effects of the nuclear modeling algorithm M, and as a consequence VC will
not be diagonal. However, this matrix should be symmetric and positive definite
as a consequence of the manner in which it is produced. These values for rC and
VC serve as the “priors” in the following discussion. In other words, we assume
that the evaluator begins the evaluation process by generating prior results from
nuclear modeling and then “refines” the evaluation by incorporating experimen-
tal data in the evaluation procedure. The prior information (based on modeling)
and experimental information are treated as independent. When no relevant ex-
perimental data exist, the evaluation relies solely on nuclear theory, i.e., on the
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evaluator’s best estimates of the model parameter values and their uncertainties
propagated through to the cross sections via the model.

For the present purposes, the Bayes theorem is embodied in the following
formula

pðrÞ ¼ C � L
�

yE;VEjrÞ � p0ðrjrC;VC

�
: (1)

where:
p¼ a posteriori (posterior solution) probability density function,
p0¼ a priori (prior) probability density function,
L¼ likelihood function (also a probability density function), and
C¼normalization constant chosen so that the following normalization con-

dition is satisfied

ð
S
pðrÞdr ¼ 1

where:
dr¼ volume element (voxel) in the m-dimensional space of possible values

for r, and
S ¼ region of that space over which one must integrate in order to achieve

convergence.
It is also important to realize that whereas the components of r are random

variable arguments of the indicated functions, the quantities yE, VE, rC, and VC

are simply collections of fixed numbers.
Here, r is a vector that has the following m components: r1, r2, …, ri, …,

rm. The dimension and interpretation of r is comparable to that of rC. The solu-
tion to the evaluation problem is completely embodied in the probability density
function p(r). In probability theory, the “best estimate” value for a random vari-
able, in this case for ri, is defined as its expectation value (better known as
“mean value”) with respect to the associated probability density function.
Therefore

hrii ¼
ð
S
ripðrÞdr; i ¼ 1;m (2)

The same reasoning can be applied in order to generate a formula for determin-
ing elements of the evaluation solution covariance matrix Vr

covðri; rjÞ ¼ ðVrÞij ¼ hrirji � hriihrji; i; j ¼ 1;m (3)

where h...i represents the multivariate integration of the indicated quantities in
the same manner as shown for ri in Eq 2. When i¼ j we obtain the variances
from Eq 3, and the off diagonal elements (often referred to as “covariances”) are
obtained when i= j. Equations 1 through 3 provide all that is needed—at least
conceptually—in order to perform an evaluation of the components of the
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solution vector r and determine the covariance matrix Vr. Obviously, we cannot
proceed further unless we actually have knowledge of the probability density
function p0 and the likelihood function L. Fortunately, a rigorous solution to
this problem emerged from the pioneering work on information entropy by
Shannon (in the 1940s) [6] and Jaynes (in the 1960s) [7]. The principle of maxi-
mum (information) entropy tells us that if all we know about a collection of ran-
dom variables can be summarized by their mean values and associated
covariance matrix, then the best estimate for the form of the prior probability
density function is a multivariate normal function (Gaussian). In our case we
have

p0ðrjrC;VCÞ � exp

�
� 1

2
½ðr� rCÞT � V�1

C � ðr� rCÞ�
�

(4)

LðyE;VEjrÞ � exp

�
� 1

2
½ðy� yEÞ

T � V�1
E � ðy� yEÞ�

�
(5)

where:
VC
�1 and VE

�1¼ inverse matrices,
T¼ transpose of the indicated vector, and
�¼ indication that normalization constants are required but are not shown

explicitly.
VC and VE must be square, symmetric, positive definite matrices because

they have to be inverted. The reason y and yE appear in Eq 5, rather than
“r”-type variables, is that the relationship between the experimental data yE and
the variables r to be evaluated might be indirect. For example, the experimental
data might represent ratios of the variables to be evaluated, or they might be in-
tegral quantities. In fact, it is appropriate to define y by the expression y¼ f(r),
where f represents a vector collection of n scalar functions f1, f2, …, fi, …, fn,
with the variables of each being one or more of the elements of r. Combining
Eqs 1, 4, and 5 leads to the expression

pðrÞ � exp

�
� 1

2
½fðy� yEÞ

T � V�1
E � ðy� yEÞg þ fðr� rCÞT � V�1

C � ðr� rCÞg�
�

(6)

Again, the required normalization constant is omitted from this formula. Appli-
cation of the maximum entropy principle also leads to the conclusion that the
best solution for the evaluation should correspond to values of the components
of r that maximize p(r), and therefore that

½fðy� yEÞ
T � V�1

E � ðy� yEÞg þ fðr� rCÞT � V�1
C � ðr� rCÞg� ¼ minimum (7)

This, in turn, leads directly to the well-known GLSQ [9]. Finally, if we assume
that there is no prior information available (comparable to the exceedingly large
uncertainties manifested in VC), then the second term in Eq 7 in the brackets af-
ter the “þ” sign can be neglected. The remaining term in Eq 7 then leads to the
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simple least-squares method [9]. In both cases, the formulas yielding the solu-
tion of r that satisfies Eq 7 involve the linearization of the mathematical prob-
lem, as mentioned above [9].

The UMC method, as originally formulated (UMC-G), involves calculating
the integrals shown in Eqs 2 and 3 to obtain the solution vector r and its covari-
ance matrix Vr. The posterior probability density function p that is given in Eq
6 is used for this purpose, subject to the normalization requirement mentioned
above. Although this approach is conceptually simple, it is mathematically very
difficult to implement. In fact, these integrals can rarely, if ever, be determined
in closed form. Also, deterministic numerical integration is usually impractical.
However, it was demonstrated in earlier papers that these integrals can be com-
puted stochastically to any desired degree of accuracy by pursuing a suitably
large number of Monte Carlo histories [2,4,5]. Two different sampling methods
were considered in earlier works: an easy to visualize “brute force” approach,
UMC-G (BF), in which possible values of r are sampled in the whole space S
with no conditions imposed, and the more efficient but less transparent
“Metropolis” scheme, UMC-G (METR), described in one of the papers docu-
menting these studies [4], in which sampling occurs preferentially in regions of
S corresponding to the highest values of p(r). Both of these methods yield essen-
tially the same results, to statistical precision, but many more histories need to
be followed in the BF approach in order to achieve adequate convergence com-
parable to that of the METR scheme. The METR method is vastly more efficient
because minimal computational effort is expended in regions of low probability.
The details of these two sampling schemes are extensively discussed in the ear-
lier papers, and various simple “toy” examples are given to illustrate UMC-G
(“Toy Stories” 1, 2, and 3) [2,4,5]. We do not mention these results here, but the
following summarizes the key points that were learned from this earlier work:
� UMC-G and GLSQ yield the same converged results for both the mean

values and the corresponding uncertainties for all situations that
involve linear relationships between the experimental data and the
cross sections to be evaluated. This would include consideration of inte-
gral experimental data as well as of differential data.

� Significant differences between the UMC-G and GLSQ solutions are
observed in certain situations involving ratio data, large uncertainties,
and discrepant experimental data.

� Transformation of variables to logarithm form can eliminate non-linear
effects in the case of simple ratio data, but the evaluated results will
always differ from the solutions in untransformed space (to a greater or
lesser extent, depending on the details of the problem); i.e., a biased so-
lution is obtained.

An alternative approach to UMC (UMC-B) was suggested by two of the pres-
ent authors (Capote and Trkov). Subsequently, it has been tested through com-
parisons to GLSQ and UMC-G for some simple problems. This method is
described and the results from its testing are reported for the first time in this
paper. The concept of UMC-B evolved from the perceived need to overcome a li-
mitation in analyses of the performance of complex nuclear systems based on
the powerful Total Monte Carlo (TMC) approach developed by Koning and
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Rochman [10], i.e., its excessive reliance on nuclear modeling and inadequate
consideration of experimental nuclear data.

There are strong similarities between UMC-B and UMC-G in terms of the
underlying mathematical assumptions. In both cases, stochastic methods are
applied and the inherent properties of the probability distributions associated
with the model-calculated and experimental data are taken into consideration,
as discussed in detail above. The main difference lies in the manner in which
the mathematical problem is formulated and stochastic analysis is carried out.
As is the case for UMC-G, the UMC-B approach involves generating a collection
of K calculated cross section sets {rCk¼M[qk]} based on K randomly chosen
model parameter vectors {qk}. However, the mean values rC and the covariance
matrix VC are not explicitly calculated at the outset, as is the case for UMC-G.
Instead, a collection of K scalar weighting parameters {xk} is generated. Individ-
ual xk values are calculated on the fly during each sampling history, where

xk ¼ exp

�
� 1

2
½ðyk � yEÞ

T � V�1
E � ðyk � yEÞ�

�
(8)

Here, yk¼ f(rCk), as indicated above. The resemblance of the term on the right-
hand side of Eq 8 to the expression for the function L in Eq 5 is not coincidental.
The weighting parameter xk provides a measure of the deviation of the calcu-
lated vector yk from the experimental one yE for the kth Monte Carlo history. If
the deviation is large, xk will be small (or even zero, for all practical purposes),
and this particular history will have little or no influence on the outcome.

The procedure of UMC-B yields the Markov chain of pairs of quantities
{rCk, xk} for k¼ 1,K. From this information one can obtain the solution mean
values r and covariance matrix Vr for an evaluation by using the following for-
mulas (for i,j¼ 1,m)

ri �
X

k¼1;K

xkrCik

" #� X
k¼1;K

xk

" #
; i ¼ 1;m (9)

ðVrÞij �
X

k¼1;K

xkrCikrCjk

" #� X
k¼1;K

xk

" #
� rirj; i; j ¼ 1;m (10)

Notice that we have dropped the use of h...i to represent averages. One could
also retain the collection {rCk, xk} of values for a variety of further analyses, e.g.,
for use in an augmented version of the TMC approach mentioned above [10]. In
UMC-B, the results obtained from each sampling history need to be taken into
consideration, because the mean values and covariances are calculated after the
sampling process is complete. The computational effort required for histories
involving small values of the weight factor xk is identical to that for heavily
weighted histories, and can be substantial for complicated nuclear models and
an extensive range of data. Also, the sampling range for the nuclear model pa-
rameters must be sufficiently large to ensure that no histories involving
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significant values of xk are overlooked, because biases will result if they are
neglected. Although this procedure is conceptually straightforward, and thus
appealing, just as it is in the case of the UMC-G (BF) method [2,4,5], and
although it should give reasonable results if applied carefully, it is not very effi-
cient. There is no obvious way to invoke the METR sampling scheme in UMC-B
as is the case for UMC-G. The UMC-B approach clearly takes into account both
the prior and likelihood probability functions, but the manner in which this is
done is obviously quite different from that in the UMC-G approach, with which
the posterior joint probability function (inclusive of both theoretical and experi-
mental information) is constructed (either deterministically or stochastically)
before the second stage in the analysis commences. If no experimental data are
involved, then the UMC-B and UMC-G methods degenerate to a common
approach. In UMC-B, all the weighting factors xk can be treated as a common
constant (unity for convenience) in Eqs 9 and 10. These equations then also
apply directly in the UMC-G method. Although we offer no formal proof that
this is the case, it is intuitively reasonable to assume that UMC-B and UMC-G
should yield essentially the same results, within statistical accuracy, provided
that a comprehensive sampling of parameter spaces takes place (please note
that the employed parameter space is identical in both methods). In the next
section we examine two simple “toy” examples, using three distinct methods
(GLSQ, UMC-G, and UMC-B) to explore the equivalences (or differences) in
these distinct methods.

The reader might wonder why “B” and “G” are used to identify these two
UMC approaches. The reason is a historical one and involves three authors of
the current work. The UMC-G approach was conceived when Smith was getting
his automobile repaired (thus “G” for “garage”). The UMC-B approach was con-
ceived when Capote and Trkov were having breakfast one morning at a Port Jef-
ferson covariance workshop (thus “B” for “breakfast”).

A Hypothetical Example (“Toy Story 4”)

UMC analysis is computationally intensive for both UMC-G and UMC-B, as dis-
cussed earlier in this paper. Therefore, in order to compare the various
approaches discussed here, i.e., GLSQ, UMC-B, and UMC-G, a simple (toy)
model has been devised that incorporates several important features that are
frequently encountered in realistic evaluation situations. However, the present
example carries less computational overhead. This model (“Toy Story 4”)
involves an evaluation of energy-dependent cross section data r1, r2, and r3 cor-
responding to three distinct energies (nodes) E1, E2, and E3. Three “theoretical”
values (rC1, rC2, and rC3) are calculated with a model function f(E,p1,p2) corre-
sponding directly to these individual nodes as well as two hypothetical, related
“experimental” results yE1 and yE2. There is one node (#3) without measured
data, and the goal is to “evaluate” the cross section for all three energies. The
model features two parameters, p1 and p2. The model scheme and numerical
input data utilized in the calculations are summarized in Table 1. In this table,
“/!” means that the indicated quantities are comparable but not exactly
equivalent.
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In all, 32 separate calculations were performed using this model and data
set. They encompass two parameter sampling schemes (normal and log-nor-
mal), four computational schemes [UMC-B, UMC-G (BF), UMC-G (METR), and
GLSQ], and sets of both non-discrepant and discrepant linear and ratio experi-
mental data. For simplicity, the two model parameters p1 and p2 employed in
this exercise are assumed to be uncorrelated. Furthermore, all experimental
data are also treated as uncorrelated. Strong correlations observed in the
model-calculated nodal results (93 % to 98 %) are attributable to effects of the
model itself. This situation is also typical of the more complex physical models
used in nuclear data evaluations. A consequence of this is that although the
uncertainties in the model-calculated nodal values are large (25 % to 28 %), the
uncertainties in their calculated ratios are modest (about 5 %) due to these
strong correlations. Each Monte Carlo calculation comprised 5� 107 sampling
histories in order to ensure that stochastic variations in the final results were as
small as possible, i.e., the statistical uncertainty of derived Monte Carlo values
was negligible. Then, the results from the various approaches could be properly
compared. Solution mean values and covariance matrices were determined for
each set of calculations. For comparison purposes, ratios of the nodal mean val-
ues were calculated relative to those for UMC-G (METR). The latter were treated
as the “benchmark” values for the present exercise, because it was determined
in earlier work that results obtained via this method are usually relatively stable,
and they might be the most reliable for a variety of evaluation situations.
Results from this analysis are shown in Fig. 1.

Some general conclusions can be drawn from this work. They are summar-
ized as follows:

TABLE 1—“Toy Story 4” hypothetical model and input data.

Model Formula and Data Scheme

sC¼ f(E, p1, p2)¼p1�E1/2� exp(�E/p2)

Theory Experiment (Linear) Experiment (Ratio)

sC1¼ f(E1,p1,p2) yE1 /! sC1 yE1 /! sC1

sC2¼ f(E2,p1,p2) yE2 /! sC2 yE2 /! sC2/sC1

sC3¼ f(E3,p1,p2) No data No data

Model Parameters: cov(p1,p2)¼0 for all cases

Non-discrepant Discrepant

p1¼1.0 (625.0 %) p2¼ 2.0 (610.0 %) p1¼ 1.0 (628.5 %) p2¼ 2.0 (610.0 %)

Experimental Data: yE1¼0.5728 (65 %) for all cases

Non-discrepant Discrepant

Linear Ratio Linear Ratio

yE2¼0.6075 (65 %) yE2¼1.1031 (65 %) yE2¼0.4050 (65 %) yE2¼0.7354 (65 %)
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� The computational time required for any one of the three Monte Carlo
approaches considered here exceeds that required for the deterministic
GLSQ approach by many orders of magnitude. Therefore, the use of
stochastic methods such as UMC for evaluation purposes cannot be jus-
tified in contemporary circumstances unless the conditions suggest that
GLSQ is likely to give erroneous results (e.g., for highly non-linear mod-
els, large uncertainties, ratios, and discrepant data) or new evaluation
methods are employed (e.g., TMC) that explicitly require stochastic
samples (instead of the closed form solution).

� When the experimental data included in the evaluation are relatively
consistent (non-discrepant), regardless of whether linear values or ratio
values are used or whether normal or log-normal parameter sampling is
employed, all methods of analysis yield results that agree very well for
the mean values and covariance matrices. Although systematic depar-
tures from unity can be seen in the various plots of the mean-value
ratios appearing in Fig. 1, these are sufficiently small to be of negligible
consequence.

� When the experimental data are discrepant, there are discernable and
systematic differences in some of the results obtained via the various

FIG. 1—Results from 32 calculations with the “Toy Story 4” hypothetical model. The

plotted values represent ratios of calculated mean values to comparable ones obtained

with the UMC-G (METR) approach. Therefore, all data points with the symbol “D” are

exactly unity. Vertical scales are very different for different plots in the figure.
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parameter sampling and data analysis methods, as is evident from the
results shown in the plots of Fig. 1. (i) For linear but discrepant data, it
is observed that the UMC-B results differ from the relative consistency
of the results obtained via the other three approaches (both determinis-
tic and Monte Carlo), regardless of whether normal or log-normal pa-
rameter sampling is employed. (ii) For ratio data, only the UMC-G (BF)
approach gives results that are acceptably consistent with those
obtained when using the UMC-G (METR) benchmark approach. Both
UMC-B and GLSQ approaches give results that deviate noticeably from
the benchmark. The failure of GLSQ when discrepant ratio data are
involved is well understood from earlier work [4]. The tendency of
UMC-B to fail under these conditions is a new observation from the
present investigation. In this particular situation, the discrepancy is
likely due to an inadequacy of sampling of the nodal quantities. How-
ever, this should not be construed as a general indictment against
UMC-B for all situations. Further investigation of the UMC-B is
required in order to clarify this issue.

� The UMC-B advantages (and appeal) stem from the fact that theoretical
sampling and experimental weighting are performed at the same time
in each Monte Carlo history. However, this also implies a disadvantage,
due to possible restrictions in the sampling space. Additionally, for dis-
crepant data the low acceptance ratio of this approach is problematic,
because it is then necessary to increase the number of rather time-
consuming modeling calculations (especially in more realistic situa-
tions), and many of them would have to be effectively thrown away in
the process because of the near-zero weighting factors obtained.

Evaluation of the 55Mn(n,c)56Mn Dosimetry Reaction

We began the evaluation process by downloading the available compiled experi-
mental data for this reaction from the Experimental Nuclear Reaction Data
EXFOR website [11]. The EXFOR database is generally considered to be almost
complete for neutron-induced reactions. As discussed in a recent publication
[12], the need to weed out bad data and perform needed adjustments to the
remaining values in order to provide consistent experimental results for an eval-
uation is of critical importance. All evaluation methods are very sensitive to the
influences of discrepant data, as they will distort the evaluated results. The
example discussed above (“Toy Story 4”) provides a demonstration of how mis-
leading evaluated results can be traced to discrepant experimental data. The
procedure used to prepare the experimental database for the present evaluation
of neutron capture on manganese is documented below.

Experimental Data Preparation

The retrieval of experimental data from the EXFOR database produced 24 dis-
tinct sets to be considered for this evaluation, as plotted in Fig. 2 [12]. Seventeen
of these sets were retained from the retrieved collection after reviewing these
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data. The remaining seven sets were rejected for various reasons, including
obvious discrepancies; the absence of numerical uncertainty information; and
the lack, unavailability, or inadequacy of documentation. Adjustments were
applied to the accepted data sets as needed in order to account for changes in
standards and other factors, so as to ensure that the information from these
data sets was utilized properly in the present evaluation. Some of these adjust-
ments were rather arbitrary, but they are all based on evaluator experience.

The accepted cross section data were renormalized to reflect ENDF/B-VII.0
values for the utilized reference standards wherever possible [3]. When the ref-
erence standard cross section values originally used were provided in EXFOR, it
was possible to renormalize to current reference values quite easily, and no
additional uncertainty was added. If no reference was specified, an extra uncer-
tainty of 10 % was assigned. When an acknowledged reference cross section
standard was specified in EXFOR but the actual values used by the experiment-
ers were not given, an additional uncertainty of 5 % was imposed. When a non-
standard reference cross section was used and no values for it appeared in
EXFOR, an additional uncertainty of 10 % was assigned. No correlation infor-
mation is available in EXFOR, so rough estimates were made of uncertainty
correlations between data points within individual sets and between separate
data sets. Within individual data sets, correlations were generally estimated by
considering the limited descriptive information provided to EXFOR by the orig-
inal authors regarding the uncertainty sources in their data. Typical values of
these assumed correlations are 0, 20, 50, 80, and 100 %. Absolute data (no refer-
ence standard employed in the experiment) were assumed to be uncorrelated

FIG. 2—Raw experimental data as retrieved from EXFOR [11].
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(0 %) to all other data sets. This also applied when no reference standard was
specified. Separate data sets involving the same reference standard were
assumed to be 20 % correlated. Data measured using different reference stand-
ards were assumed to be uncorrelated. Some data sets that were judged to be
widely discrepant in normalization with respect to the main body of cross sec-
tion data were nevertheless retained for the useful shape information they pro-
vided. They were renormalized for evaluation purposes to the ENDF/B-VII.0
manganese capture cross section values at selected energies, and an additional
uncertainty of 20 % was assigned. A strong correlation of 0.8 was imposed in
order to emphasize the shape information content and de-emphasize the influ-
ence of the data normalization on the evaluation process. The adjusted experi-
mental cross section values that were used in the present evaluation, along with
their uncertainties, are plotted in Fig. 3 (points labeled with “*” are the ones
that were adjusted).

The improvement in the consistency of the experimental results brought
about by the above-mentioned deletions and adjustments is evident from a com-
parison of Figs. 2 and 3. There appear to be no serious discrepancies for these
considered data, within the estimated experimental uncertainties.

Nuclear Reaction Modeling

The available experimental database exhibits a lack of reliable data between 4
and 13 MeV. Therefore, nuclear reaction calculations are clearly needed in

FIG. 3—Adjusted experimental values with 1-sigma uncertainties used in the current

evaluation. Data marked with “*” were modified as described in the text.
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order to provide a typically highly correlated prior for the combined evaluation
process. Nuclear data modeling was undertaken using the EMPIRE code [13].
Default values for nuclear model parameters and their uncertainties were taken
from the RIPL-3 collection [14]. The calculated manganese capture cross sec-
tions and corresponding theoretical (model) uncertainties are shown in Fig. 4,
in which they are also compared with the accepted experimental data. No
attempt was made to improve the normalization or shape of the EMPIRE calcu-
lations, because the prior was seen to be consistent with the experimental data-
base within quoted model uncertainties from 20 % to 30 % below 1 MeV up to
60 % in the energy region of 2–10 MeV. Higher uncertainty above 3 to 4 MeV
results from there being more competing channels open, with the capture con-
tribution becoming negligible compared to competing channels at higher
energies.

This evaluation was performed using both GLSQ and UMC-G (METR)
methods. It should be noted that the UMC-B and UMC-G methods will yield the
same results as long as both encompass the same sampling space, the experi-
mental data are statistically consistent (non-discrepant), and a linear depend-
ence of cross sections holds (no ratio data used). All these conditions are met in
this example; therefore, the UMC-B method was not employed for this

FIG. 4—Experimental data compared to EMPIRE calculated prior (blue dashed-dotted

line) with prior uncertainties (blue thin lines) versus evaluation results by GLSQ (red

dashed line) and UMC-G Metropolis (black solid line) with final uncertainties (hatched

area). GLSQ uncertainties are identical to UMC-G (METR) uncertainties and are not

shown. All uncertainties are 1-sigma.
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evaluation. The agreement of the GLSQ and UMC-G results is excellent over the
whole energy range for both posterior mean values and corresponding uncer-
tainties. Good agreement was expected based on previous experience with the
“toy” test examples, as all experimental cross sections were given directly and
no ratio data were used. So, the evaluation problem was an entirely linear one.
It should be noted that the inclusion of the relatively accurate experimental
data in the vicinity of 200 keV resulted in an evaluated solution curve that dif-
fered considerably from the less accurate calculated model prior. These solution
results, although they fall within the envelope of uncertainties for the calculated
values, nevertheless lie near the upper uncertainty boundary for the theoretical
results in that energy region.

Conclusions

This paper discusses the underlying mathematical foundations of the general-
ized least-squares method (GLSQ) and two distinct Unified Monte Carlo meth-
ods (UMC-G and UMC-B), and it points out similarities and differences among
them. The UMC-B approach is reported here for the first time. Through the use
of various permutations of a simple example, it has been demonstrated that all
three approaches yield results that are in close agreement for linear and non-
discrepant data. However, the computational time required for these UMC
approaches exceeds that required for the deterministic GLSQ approach by
many orders of magnitude. Therefore, the use of stochastic methods such as
UMC-G (METR) and UMC-B for evaluation purposes is justified for linear and
non-discrepant experimental data only if new evaluation methods (e.g., TMC)
that explicitly require stochastic samples are employed.

When discrepancies and/or nonlinearities (such as those arising from the
use of experimental ratio data) are considered, some significant differences are
seen to emerge. The UMC-G and UMC-B approaches tend to give about the
same results under favorable circumstances, but noticeable differences appear
for certain situations that involve unfavorable data situations. The same effect
can be observed for the UMC-G approach when brute force (BF) sampling is
employed and selected ranges of the sampled parameters are too limited. These
differences are traced to the fact that in the UMC-B approach, it is difficult to
ensure that underlying probability distributions are adequately sampled unless
the experimental data and theoretical modeling are not discrepant. Therefore,
for non-linear and/or discrepant experimental data, only UMC-G (METR) is rec-
ommended. The fact that the GLSQ method fails in situations involving severe
non-linearity, discrepant data, and/or large uncertainties was noted in earlier
work; this outcome has been reconfirmed in the present investigation.

The UMC-G (METR) and GLSQ methods were both employed to evaluate
cross sections for the 55Mn(n,c)56Mn neutron dosimetry reaction in the energy
range of 100 keV to 20 MeV. After selection and adjustment of the available ex-
perimental data downloaded from EXFOR by the evaluator, it was observed
that these selected and adjusted data were reasonably consistent with each
other and with the nuclear model calculations. Under these conditions, the eval-
uated results provided by both UMC-G and GLSQ agreed very well, as expected.
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Because stochastic approaches to data evaluation are computationally very in-
tensive, it is difficult to justify their use in situations such as the present one in
which the standard GLSQ approach is likely to give adequate results. However,
in the future, when computational power is likely to be less of a concern than it
is today, the more rigorous and flexible stochastic approaches might become
accepted as default methods for performing nuclear reaction data evaluations.
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