
1

An EXFOR parser prototype for layer 0
and

about Transformers
Georg Schnabel

g.schnabel [at] iaea.org

Nuclear Data Section
Division of Physical and Chemical Sciences NAPC
Department for Nuclear Sciences and Applications

IAEA, Vienna

WPEC-SG50 meeting
5 May 2022

2

Outline

● Design considerations of an Python EXFOR parser for layer 0 and
implementation details

● About transformers and how they can be used to interlink with
codes at higher layers

3

Basic guiding principle

● Python data structure should contain all EXFOR information
● We may also want to go back to EXFOR master files
● The data structure should not be “too far away” from EXFOR

EXFOR
Python

data structure

4

Usage example of parser

Reading an EXFOR master file
from exfor_parser import ExforBaseParser
parser = ExforBaseParser()
exfor_dic = parser.readfile(‘testdata/entry_21308.txt’)

Change something
exfor_dic['21308']['21308001']['BIB']['AUTHOR'] = 'Mr. Anonymous’

Writing back an EXFOR master file
parser.writefile('testoutput.x4', exfor_dic)

5

Structure of the Python data structure:
nested dictionaries
21308 -> 21308001 -> BIB -----> AUTHOR (string)
 | |
 | L----> REFERENCE (string)
 | |
 | L----> REACTION (string)
 | |
 | L----> ...
 |
 |
 L> COMMON --> UNIT ---> ERR-S (string)
 | | |
 | | |--> DATA (string)
 | | |
 | | L--> ...
 | |
 | L-> DATA ---> ERR-S (float)
 | |
 | L--> DATA (float)
 | |
 | L--> ...
 |
 L> DATA ----> UNIT ---> ERR-S (string)
 | |
 | |--> DATA (string)
 | |
 | L--> ...
 |
 L-> DATA ---> ERR-S (list)
 |
 L--> DATA (list)
 |
 L--> ...

Example:
exfor_dic['21308']['21308001']['BIB']['AUTHOR']

returns: (D.B.GAYTHER,M.C.MOXON,B.W.THOMAS,R.B.THOM,
 J.B.BRISLAND)

6

Handling of pointers

If a field contains pointers, the content of the field will not be a string but a
dictionary with the keys given by the pointers, e.g.,

Example:

exfor_entry['O2098']['O2098002']['BIB']['REACTION']
returns
{ '1': '(8-O-17(P,G)9-F-18,,SIG,,SFC)S factors of primary transitions',

'2': '(8-O-17(P,G)9-F-18,,SIG,,SFC)S factors of secondary transitions' }

O2098 ->O2098002 -> BIB -----> AUTHOR (string) -> ...
 |
 L----> REFERENCE (string)
 |
 L----> REACTION ---> 1 (string)
 | |
 | L--> A (string)
 |
 L----> ...

7

Design principles #2

● All text strings in fields are preserved (EXFOR codes + free text)
● Line breaks are preserved
● (Different) units are preserved
● COMMON blocks are preserved
● etc. etc.

→ Even though the EXFOR entry is now in a Python data structure,
we still have a rather unhandy format.

8

Transformers

● The idea is to apply functions that take the EXFOR dictionary as
returned by the ExforBaseParser as argument, perform some
transformations on the data and/or the structure and return a
modified data structure

● We can call such functions transformers
● A variety of transformers can be conceived to prepare the data

structure in ways more pertinent for processing codes at higher
layers (1,2,3) and/or the end-user

9

Example of a transformer: unitfy

● Bring all the energy units to MeV and all cross section-like units to
mbarn in the DATA and COMMON dictionaries. Also handle
compound units such as B*GeV for xs integrals and B/SR for
angular distributions

from exfor_parser.trafos import unify
transformed_exfor_dic = unitfy(exfor_dic)

10

Ideas for more transformers

● Uncommonify: Integrate the data in the COMMON block into
the DATA block

● Detextify: Remove free-form text from fields
● Reactify: Unify the representation in the REACTION string
● Unpointerfy: Split a subentry with pointers into virtual

subentries with an augmented subentry id, e.g.,
O2098002 → O20980021 and O20980022
(as in the IAEA-EXFOR system by V. Zerkin)

● Tablify: Get rid of all the nested dictionary structures and
condense the information into a single table
(similar to C4)

● etc. etc.

11

Summary

● Basic EXFOR parsing implemented
● More complex transformations afterwards by transformers
● Source code [(c) IAEA and MIT license] available at

https://github.com/iaea-nds/exfor-parserpy.git
● Feedback and contributions appreciated
● My wish/hope: We build something together and release it open-

source for everyone (NEA + IAEA Member States)

https://github.com/iaea-nds/exfor-parserpy.git

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

